DYBLUP iregulates motor in response to light. Chlamydomonas cells normally swim towards dim blue light but away from bright blue light

Single-celled algae and animal sperm cells are widely separated in evolution but both swim in the same way, by waving their protruding hairs, called cilia or flagella. Motion is driven by molecular motors, complex assemblies of proteins that exert a force when changing shape.

The motor proteins are connected to the cell’s internal skeleton of microtubules; the moving force from the motor causes microtubules to slide, moving the flagella and propelling the cell.

Now a team led by Professor Kazuo Inaba of the University of Tsukuba in collaboration with scientists from Osaka University, Tokyo Institute of Technology, and Paul Scherrer Institute has described a new protein that is closely associated with one class of motors, called dyneins. They recently published their findings in Science Advances.

The team isolated molecular motor complexes from sperm cells of a marine invertebrate, the sea squirt Ciona intestinalis. Among the components, they discovered a novel protein related to a protein with a blue-light sensing function, called BLUF.

They named the new protein “DYBLUP” for dynein-associated BLUF protein. Comparing gene sequences, they found DYBLUP has been conserved during evolution across a wide range of organisms, from some fungi and algae to animals (but is not found in arthropods or higher plants).

Working with the single-celled alga Chlamydomonas, the team used powerful electron microscopy techniques to show that DYBLUP is part of the molecular tether linking the motor protein to the microtubules.

They then showed that DYBLUP is also involved in regulating the motor in response to light. Chlamydomonas cells normally swim towards dim blue light but away from bright blue light, which damages the cells.

Originally published at Medical News