jet-engine-400x265WHY ENERGY plays an important role in the economy of any country. Why we are looking for gas as an energy source to our country. The oil and gas industry commonly use gas turbines to drive pumps and compressors, process industries use them to drive compressors and other large mechanical equipment, and many industrial and institutional facilities use turbines to generate electricity for use on-site. When used to generate power on-site, gas turbines are often used in combined heat and power mode where energy in the turbine exhausts provides thermal energy to the facility.

Gas turbines are ideally suited for CHP (combined heat and power) applications because their high-temperature exhaust can be used to generate process steam at conditions as high as 1,200 pounds per square inch gauge (psig) and 900 degree Fahrenheit (°F) or used directly in industrial processes for heating or drying. A typical industrial CHP application for gas turbines is a chemicals plant with a 25 MW simple cycle gas turbine supplying base-load power to the plant with an unfired heat recovery steam generator (HRSG) on the exhaust. Approximately 29 MW thermal (MW th) of steam is produced for process use within the plant. A typical commercial/institutional CHP application for gas turbines is a college or university campus with a 5 MW simple-cycle gas turbine. Approximately 8 MW th of 150 to 400 psig steam (or hot water) is produced in an unfired heat recovery steam generator and sent into a central thermal loop for campus space heating during winter months or to single-effect absorption chillers to provide cooling during the summer.

While the recovery of thermal energy provides compelling economics for gas turbine CHP, smaller gas turbines supply prime power in certain applications. Large industrial facilities install simple-cycle gas turbines without heat recovery to provide peaking power in capacity constrained areas, and utilities often place gas turbines in the 5 to 40 MW size range at substations to provide incremental capacity and grid support. A number of turbine manufacturers and packagers offer mobile turbine generator units in this size range that can be used in one location during a period of peak demand and then trucked to another location for the following season.

The benefits of gas turbines used in CHP stem from the high temperature and flow rate of gas turbine exhaust. The economics of gas turbines in process applications depend on effective use of the thermal energy contained in the exhaust gas, which generally represents 60 to 70 per cent of the inlet fuel energy. The most common use of this energy is for steam generation in unfired or supplementary fired heat recovery steam generators. However, the gas turbine exhaust gases can also be used as a source of direct process energy, for unfired or fired process fluid heaters, or as preheated combustion air for power boilers. Overall or total efficiency of a CHP system is a function of the amount of energy recovered from the turbine exhaust. The two most important factors influencing the amount of energy available for steam generation are gas turbine exhaust temperature and HRSG stack temperature

Gas turbines produce a high quality (high temperature) thermal output suitable for most combined heat and power applications. High-pressure steam can be generated or the exhaust can be used directly for process drying and heating.

Overall or total efficiency of a CHP system is a function of the amount of energy recovered from the turbine exhaust. The two most important factors influencing the amount of energy available for steam generation are gas turbine exhaust temperature and HRSG stack temperature. This is the main reason why we are looking for energy in the Gas sector yes to move industry to grow well.

 <engr.irfan7007@yahoo.com>

By Web Team

Technology Times Web team handles all matters relevant to website posting and management.