Scientists Have Developed a Nanobody that may help toTreat Parkinson’s Disease ,The immune system uses proteins referred to as antibodies to detect and attack invading pathogens. Mini versions of antibodies, called nanobodies natural compounds in the blood of animals such as llamas and sharks are being researched to treat autoimmune diseases and cancer.

Johns Hopkins Scientists Have Developed a Nanobody That May Treat Parkinson’s Disease

Now, scientists from Johns Hopkins Medicine have helped create a nanobody that can penetrate the tough outer layer of brain cells and disentangle misshapen proteins that cause disorders such as Parkinson’s disease, Lewy body dementia, and other neurocognitive problems. Researchers from Johns Hopkins Medicine, under the direction of Xiaobo Mao, Ph.D., and researchers from the University of Michigan, Ann Arbor, collaborated on the study, which was recently published in the journal Nature Communications. They set out to discover a new treatment method that could target the misshapen proteins known as alpha-synuclein, which have a tendency to cluster and impede the inner workings of brain cells. New research suggests that alpha-synuclein clumps can spread from the gut or nose to the brain, accelerating disease progression.

Theoretically, antibodies may be able to target clumping alpha-synuclein proteins, but pathogen-fighting compounds have difficulty penetrating the outer covering of brain cells. To get past the tough brain cell coatings, the researchers chose to employ nanobodies, which are tiny versions of antibodies. Traditionally, nanobodies produced outside of the cell may not perform the same function within the cell. As a result, the researchers had to strengthen the nanobodies in order for them to remain stable inside a brain cell. They achieved this by genetically engineering the nanobodies to purge them of the chemical bonds that normally degrade within a cell. Tests revealed that even without the bonds, the nanobody was still able to bind to misshapen alpha-synuclein and stay stable. The team made seven, similar types of nanobodies, known as PFFNBs, that could bind to alpha-synuclein clumps. Of the nanobodies they created, one PFFNB2 did the best job of glomming onto alpha-synuclein clumps and not single molecules, or monomers of alpha-synuclein. Monomer versions of alpha-synuclein are not harmful and may have important functions in brain cells. The researchers also needed to determine if the PFFNB2 nanobody could remain stable and work inside brain cells. The team found that in live mouse-brain cells and tissue, PFFNB2 was stable and showed a strong affinity to alpha-synuclein clumps rather than single alpha-synuclein monomers.

Source: This news is originally published by scitechdaily

By Web Team

Technology Times Web team handles all matters relevant to website posting and management.