Experts are closer than ever to creating a sophisticated quantum internet. Scientists can now transmit quantum information over 27 miles.

Experts are closer than ever to creating a sophisticated and highly secure quantum internet. Scientists have now been able to transmit quantum information over 27 miles (44 km).

Data accuracy (data accuracy) and transmission distance are essential components of building a working quantum internet – which is the cornerstone of a next-generation communications infrastructure.

The team confirmed that it achieved an accuracy level above 90% with its quantitative information.

Dr Panagiotis Spentzores, a physicist from the California Institute of Technology’s Fermilab Particle and Accelerator Physics Laboratory, said he was happy with the success of the tests.

“This is a major achievement on the road to building technology that will redefine how global communication is conducted,” he said.

Quantum internet technology uses strange, unmeasured particles suspended in a mix of possible states, like spinning dice that have not yet settled.

Although rolling dice are theoretically capable of settling on any number, they are guaranteed to make a total, regardless of the distance between them.

It is therefore understood that data on one site immediately reflects this in another location, regardless of distance.

Once introduced to one another, the qubits’ identities are “interwoven” in ways that are only understood once measured.

Innovative arrangements that intertwine three qubits can force the state of one particle to embrace the potential of another through its synaptic partner.

In the quantum universe, this is analogous to the transformation of one particle into another, which means that the identity travels almost instantly over a distance.

However, this entanglement still needs to be identified first, before being preserved as qubits are sent to their final destination via optical fibers or even satellites orbiting.

And the peculiar nature of quantum information makes it extremely difficult to transport entangled photons over long distances without interference.

Longer optical fibers mean an increased opportunity for noise to interfere with entanglements.

Originally Published at Dividend Wealth